Thursday, July 05, 2012

Supervolcanoes





What Triggers Devastating Supervolcanoes:

(PICTURE DESCRIPTION: The Mt. St. Helens eruption of May 18, 1980, sent volcanic ash, steam, water, and debris to a height of 60,000 feet. About two-thirds of a cubic mile of material was ejected. In comparison, the Toba super eruption, one of the Earth's largest known eruptions, spewed 1,000 times more material. (Washington State Department of Natural Resources)


A volcanic super eruption, which occurs about every 100,000 years, is a cataclysmic natural event, blowing out an incredible amount of debris and ash, devastating the environment and disrupting the world’s climate for years, possibly causing mass extinctions.


While scientists continuously monitor several super volcanoes around the world, they don’t know what actually triggers these violent explosions. Now, a new model of volcanic super eruptions shows these massive eruptions could be caused by a combination of magma chamber geometry and temperature.


Researchers at Oregon State University say the creation of a halo of flexible rock, which forms around the magma chamber, allows the pressure – built up over tens of thousands of years – to raise the roof above the magma chamber.

Eventually faults from above trigger the collapse of the caldera, which leads to its subsequent eruption.

“You can compare it to cracks forming on the top of baking bread as it expands, as the magma chamber pressurizes at depth, cracks form at the surface to accommodate the doming and expansion,” says lead author Patricia Gregg, a post-doctoral researcher. “Eventually, the cracks grow in size and propagate downward toward the magma chamber.”


Findings of this research were presented at the annual meeting of the Geological Society of America in Minneapolis, Minn.



The “super-eruption” of a major volcanic system occurs about every 100,000 years and is considered one of the most catastrophic natural events on Earth, yet scientists have long been unsure about what triggers these violent explosions.


Patricia “Trish” Gregg, a post-doctoral researcher at OSU and lead author on the modeling study, says the creation of a ductile halo of rock around the magma chamber allows the pressure to build over tens of thousands of years, resulting in extensive uplifting in the roof above the magma chamber. Eventually, faults from above trigger a collapse of the caldera and subsequent eruption.

“You can compare it to cracks forming on the top of baking bread as it expands,” said Gregg, a researcher in OSU’s College of Oceanic and Atmospheric Sciences. “As the magma chamber pressurizes at depth, cracks form at the surface to accommodate the doming and expansion. Eventually, the cracks grow in size and propagate downward toward the magma chamber.

“In the case of very large volcanoes, when the cracks penetrate deep enough, they can rupture the magma chamber wall and trigger roof collapse and eruption,” Gregg added.

The eruption of super-volcanoes dwarfs the eruptions of recent volcanoes and can trigger planetary climate change by inducing Ice Ages and other impacts. One such event was the Huckleberry Ridge eruption of present-day Yellowstone Park about two million years ago, which was more than 2,000 times larger than the 1980 eruption of Mount St. Helens in Washington.

“Short of a meteor impact, these super-eruptions are the worst environmental hazards our planet can face,” Gregg said. “Huge amounts of material are expelled, devastating the environment and creating a gas cloud that covers the globe for years.”


“Instead of taking the evidence in these eruptions at face value, most models have simply taken small historic eruptions and tried to scale the process up to super-volcanic proportions,” de Silva said. “Those of us who actually study these phenomena have known for a long time that these eruptions are not simply scaled-up Mt. Mazamas or Krakataus – the scaling is non-linear. The evidence is clear.”

It takes a “perfect storm” of conditions to grow an eruptible magma chamber of this size, Gregg says, which is one reason super-volcano eruptions have occurred infrequently throughout history. The magma reservoirs feeding the eruptions could be as large as 10,000- to 15,000-square cubic kilometers, and the chamber requires repeated intrusions of magma from below to heat the surrounding rock and make it malleable. It is that increase in ductility that allows the chamber to grow without magma evacuation in a more conventional manner.

When magma chambers are smaller, they may expel magma before maximum pressure is reached through frequent small eruptions.

The Yellowstone eruption is one of the largest super-volcano events in history and it has happened several times. Other super-volcano sites include Lake Toba in Sumatra, the central Andes Mountains, New Zealand and Japan.

Gregg said that despite its explosive history, it doesn’t appear that Yellowstone is primed for another super-eruption anytime soon, though the slow process of volcanic uplift is taking place every day.

“The uplift of the surface at Yellowstone right now is on the order of millimeters,” she explained. “When the Huckleberry Ridge eruption took place, the uplift of the whole Yellowstone region would have been hundreds of meters high, and perhaps as much as a kilometer.”...

No comments:

Post a Comment